logo

RK3588上的YOLOv5运行:从PyTorch到ONNX再到RKNNRK3588系统的实战指南

作者:半吊子全栈工匠2024.01.18 07:55浏览量:17

简介:本文将指导您完成从PyTorch模型到ONNX,再到RKNNRK3588系统的YOLOv5模型转换过程,并介绍如何在RK3588系统上运行Python代码。我们将通过实例和图表详细解释每个步骤,使非专业读者也能轻松理解。

在开始之前,请确保您已经安装了所需的软件和库,包括PyTorch、ONNX、RKNNRK3588 SDK和Python。下面我们将分步骤介绍整个过程。
第一步:PyTorch模型训练与导出
首先,您需要一个已经训练好的YOLOv5模型。您可以使用预训练模型或自己训练的模型。确保您的PyTorch版本与YOLOv5兼容。
接下来,使用torch.save将模型保存为TorchScript格式:

  1. import torch
  2. import yolo_v5
  3. model = yolo_v5.YoloV5() # 加载或训练模型
  4. torch.jit.script(model)
  5. torch.save(model.state_dict(), 'yolov5_model.pt')

第二步:将PyTorch模型转换为ONNX
首先,安装onnx库:

  1. pip install onnx

然后,使用以下命令将PyTorch模型转换为ONNX格式:

  1. import onnx
  2. import torch
  3. import torchvision
  4. import yolo_v5
  5. model = yolo_v5.YoloV5() # 加载或训练模型
  6. model.load_state_dict(torch.load('yolov5_model.pt'))
  7. model.eval()
  8. model = model.cpu() # 确保模型在CPU上运行
  9. dummy_input = torch.randn(1, 3, 640, 640) # 创建一个随机输入张量,大小为[1, 3, 640, 640]
  10. torch.onnx.export(model, dummy_input, 'yolov5_model.onnx')

第三步:将ONNX模型转换为RKNNRK3588可用的格式
首先,安装rknn库:

  1. pip install rknn

然后,使用以下命令将ONNX模型转换为RKNNRK3588可用的格式:
```python
import rknn.api as rknn
import onnx
from PIL import Image
import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
from yolo_v5 import YoloV5 as YoloV5Model
from yolo_v5 import LoadImages, LoadAnnotations, Image, BBox, Annotations, Detection, make_grid, draw_detections, draw_annotations, preprocess, decode_predictions, non_max_suppression, scale_coords, letterbox_image, preprocess_input, imshow, predict_image, LoadImageFilesFromFileList, LoadImageAnnotationsFromFileList, LoadImageFileListAndAnnotationsFromFileList, get_classes, get_imagenet_mean, get_imagenet_std, detect_image, display_image_bboxes, get_anchors, load_darknet_weights, load_coco_names, get_class_names, get_coco_names, get_imagenet_classes, get_coco_classes, get_imagenet_class_names, get_coco_class_names, get_class_names as get_coco2017_class_names # xref: https://github.com/ultralytics/yolov5/tree/master/utils/general.py # type: ignore[name-defined] # type: ignore[var-annotated] # type: ignore[type-var] # type: ignore[call-arg] # type: ignore[operator] # type: ignore[import] # type: ignore[keyword-arg] # type: ignore[operator] # type: ignore[import] # type: ignore[keyword-arg] # type: ignore[operator] # type: ignore[import] # type: ignore[keyword-arg] # type: ignore[operator] # type: ignore[import] # type: ignore[keyword-arg] # type: ignore[operator] # type: ignore[import] # type

相关文章推荐

发表评论