元宇宙构建基石:三维重建技术
如今“元宇宙”概念爆火,作为前沿数字科技发展的集成体之一,元宇宙正成为诸多产业寻求破局的全新风口。元宇宙是利用科技手段进行链接与创造,与现实世界映射和交互的虚拟世界,具备新型社会体系的数字生活空间;其本质上是对现实世界的虚拟化、数字化过程,而内容的生产则是这一过程中必不可少的环节。在元宇宙内容最主要的三个要素“人,货,场”的内容生产中,目前还是大量依赖于人工制作。新技术引发新变革,支撑元宇宙发展的底层技术正在逐步的走向完善和成熟,通过人工智能技术去创作内容(AIGC)也逐渐变成了行业趋势。因此,本篇文章将重点阐述元宇宙中“货”的自动生产,即物品的三维重建。 三维重建技术概述 在元宇宙空间中,数字化身对应的是一个个三维模型,数字化的过程即是三维重建过程。“人”和“场”由于不同个体之间的差异性较小,因此很多建模工作都依赖于人工通过专业软件去建立标准模型,再通过设置和调整参数去获取不同的个体。而对于“货”而言,由于物品形状复杂、纹理多变,且极具个性化的属性,往往导致通过建模软件制作出的模型需耗费大量的时间。例如下图通过人工制作的手办模型就比较费时费力,这极大拉高了人们参与元宇宙内容建设的门槛,但同时也给自动三维重建技术蕴藏了更多的应用潜力。 🔼基于人工制作的三维模型效果展示 物品的自动三维重建技术通常可以分为两大类,一类称之为“主动式”,另一类则为“被动式”,“主动式”和“被动式”指传感器接受信息的不同方式。一般而言,“主动式”三维重建需要先通过硬件投射出预设的信号,经由物体以后再被传感器捕捉;而“被动式” 三维重建指利用周围环境如自然光的反射,使用相机获取图像,然后通过特定算法计算得到物体的立体空间信息。常见的“主动式”三维重建方法有结构光、飞行时间(Time of Flight, ToF)、主动立体视觉技术等;而“被动式”三维重建方法包括被动视觉(双目视觉,多视角立体视觉)等。 🔼常见的物品自动三维重建技术 结构光:该技术对硬件要求较高,需要精密且复杂的投影设备(projector)和成像设备(imager) 进行操作。首先,用户使用投影设备将预设的编码图像投射到物体表面,然后编码图像因受物体形状影响发生变化,进而通过这些变化估算出物体的深度信息,实现模型重建。其中预设的编码图像包括随机散斑(激光或红外光)、条纹编码和二维结构编码等,如下图条形编码结构光系统示例。结构光技术基于的原理是三角测量法,用户只需找到变形图像中的编码特征与投射编码的对应位置关系,即可以计算出物体的深度信息。 🔼条形编码结构光系统示例 飞行时间:该技术的测距方式是主动式测距,利用如激光等光源发射至目标物体,然后再通过接收返回的光波来获取物体的深度信息。即在光速及声速一定的前提下,通过测量发射信号与接收信号的飞行时间间隔来获得距离的方法。 被动立体视觉:该技术不需要额外的装置,只需要利用相机直接对物体成像即可。根据参与重建的相机视角个数,可以分为双目(两个相机视角)和多目(>2个相机视角)两种情形。该技术同样基于三角测量法原理,通过连接不同相机光心与同一个物理点的对应像素位置来获取三维重建信息;而对应像素点的寻找则通过图像特征的匹配来实现的。 🔼三角法示例:连接相机光心与对应的像素位置生成一条直线,不同相机的直线在空间中的交点即对应了物理点的三维位置 主动立体视觉:该技术是在被动立体视觉的基础上,添加了与结构光方法类似的投射装置,但它投射出来的图像不需要有编码;更多的只是去改变物体表面的纹理性状,以增强被拍摄物体的图像特征,方便不同相机图像之间的特征匹配。 通常来说,主动式的重建方式精度会更高,但受制于投影设备,分辨率一般相对较低;而被动式的重建方式往往精度相对低一些,但分辨率较高(与图像分辨率相关)。这里的“精度”指物体重建的三维模型与物体真实三维结构间的误差,而“分辨率”则指三维重建方法建立物品模型的最小物理尺寸。从使用方式的难易程度及成本考虑,结构光、ToF等主动式三维重建方法使用的装置因普及度不高,往往需要额外购买,同时,在操作过程中还需要做定期的标定,提高了操作难度;而被动式三维重建方法则直接使用相机就能获取图像,通过手机自带的高分辨率相机就能实现物品的三维重建。因此市面上普及程度较高的智能手机就能轻松满足拍摄需求,能让更多用户参与到元宇宙的内容建设中。 百度VR物品三维重建 百度VR自研的三维重建算法能够实现物品全方位、多角度环绕拍摄,支持通过照片生成物品的3D模型。为有效降低用户拍摄物品的难度和成本,提高物品建模的效率;百度VR推出了能够全面覆盖和适配iOS和Android端的软硬件采集系统—“TL-50mini+百度VR·AI拍“。智能拍摄硬件“TL-50mini”打造了多窗口的精巧桌面摄影台,用户可以根据实际需要,实时调控灯箱